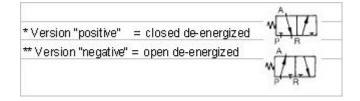
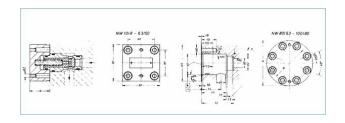


Fitted check valve NW 10 to 100

for water and oil max. 320 bar


TECHNICAL DATA


The fitted check valves are cone seat valves. Sealing is effected by pressing together of two metal cones. They were specially developed for water hydraulics. The check valves have a free passage from A to B and seal off in the opposite direction without any leakage. The opening pressure is 1 bar. Working pressure should not exceed 320 bar. However, the check valves are also available for other opening pressures as well as without closing spring. Please state opening pressure required when ordering.

Special features

The valve cone as well as the closing spring are fitted in an extremely flow-promoting fitted cartridge. A double guide for the valve cone provides for a perfect seal on the valve seat. The closing spring is chambered such that medium cannot flow through the same. Thus, in the event of any spring fracture occurring it is impossible for debris to enter into the circuit. Check valves of this type are almost insensitive with regard to the high flow speeds occurring in hydraulic press water systems. All wear parts are made of corrosion resistant materials, are easy to access and fast to replace. The mounting position can be freely chosen.

fig.: Mounting example * fitted check valve NW 10 to 100

Nennweite	1018	16/12	25/16	32/25	40/32	50/40	63/50	Nennweite	80/63	100/80
0	30	35	45	50	60	70	100	0	120	14.0
61	45	65	85	102	125	NO.	180	6	250	300
dt st	25	32	45	60	75	90	120	dt H7	N-5	180
d2***	18	25	34	45	55	68	90	d2"	110	135
d)	10	16	25	32	40	50	63	6)	80	100
d4 min	10	16	25	32	40	50	63	de min	80	100
MOX								max		-
dS	46	65	86	103	126	161	161	d5	252	392
d6	Mil	MB	M12	M16	M20	M20	M30	d6	M24	M30
d7				ME	MB	M8	: MB	d7	MB	M10
m1 102	30	46	58	70	85	100	125	AT 167	200	245
11 -8"	31	4.3	56	70	87	100	130	11 -32	175	210
12 12	· u	56	72	85	105	122	155	12 .43	205	245
13	11	111	12	1.3	.15	17	20	13	25	29
14 bei di min	25	34	66	52	64	72	95	ne beigk min	130	155
bei dii mae								bei dil max		
15	20	20	30	30	30	35	40	15	40	50
16	2	2	25	25	3	- 6	4	16	5	5
17	2	2	2.5	2.5	3	- 4	4	17	5	5
/8	0.5	0.5	0.5	Q5	0.5	0.5	0.5	18	G:5	0.5
19 mox.	18	25	31	4.2	53	52	75	t9 mox.	57	73
rio i	14	20	25	35	45	45	65	110	50	63
v	0,03	0.03	002	003	0.05	0.05	0.05	ø.	0.05	0.05
	0.05	005	0.05	G#	Q)	0.1	0.2		0.2	0.2